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The problem of constructing the leading part of a semi-infinite solid of revolution with an axially symmetric flow of an ideal
(inviscid and non-heat-conducting) gas around it which has the maximum critical Mach number is considered. A numerical-analytic
method is proposed for solving this problem. Results are presented for the case of a perfect gas with an adiabatic indexy = 1.4
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Among all the bodies which satisfy certain geometric constraints, bodies which achieve the maximum
possible critical Mach number do not experience wave drag in the maximum range of free-stream
velocities. Below, we shall refer to such bodies as optimal bodies.

The structure of plane symmetric optimal bodies and optimal solids of revolution in a flow of an ideal
gas was investigated for the first time in [1] and the investigations were subsequently extended in [2].
It was established that, for an extensive class of geometric constraints, the generatrices of optimal bodies
consist of rectilinear segments and segments in which the gas velocity is constant and equal to the critical
velocity. In particular, the problem (we shall call it Problem A) of constructing the optimal solid of
revolution with a specified thickness-to-length ratio was formulated and it was shown that Problem A
reduces to the problem of the axially symmetric gas flow around a disc at the critical velocity on the
free surface in accordance with the Ryabushinskii scheme [1]. An efficient numerical-analytic method
of calculating the ideal gas flow past a cone with an arbitrary apex angle in accordance with the
Ryabushinskii scheme has been proposed in [4]. A solution of Problem A for an ideal gas with an
adiabatic index y =: 1.4 has been obtained in [5].

1. FORMULATION OF THE PROBLEM

We consider the following problem (which we shall call Problem B). Suppose that an ideal gas flows
around a circular right cylinder and that the flow is directed along its axis. It is required to deform the
leading part of the cylinder (the part adjacent to the front end) so that there is a continuous flow around
the resulting solid of revolution at the maximum possible value of the critical Mach number M. when
one of the conditions is satisfied

LIR<l, S'/R<my, W/IR<n, (1.1

Here R is the radius of the cylinder, L is the length of the leading part of the body (the deformed apart
of the cylinder), §’ and W are the area in the meridian half-plane and the volume which are lost dunng
the deformation of the cylmdcr and Iy, my, ng are given constants. Hence S = LR S, W = nLR*- W,
where S and W are the area in the meridian half-plane and the volume of the leading part of the body.
The inequalities (1.1) limit the loss of “imbeddability” of the body which originally existed.

Using the comparison theorem [1, 2], it can be shown that the leading part of an optimal semi-infinite
solid of revolution which satisfies one of conditions (1.1) is formed by a disc and the stream surface
which joins it to the cylinder, at each point of which the gas velocity is equal to the critical velocity.
Problem B therefore reduces to the problem of the axially symmetric gas flow around a disc at the critical
velocity on the free surface according to the Zhukovskii—-Roshko scheme [3].

Note that the results of calculations of the critical Mach number M. for certain shapes of the leading
part of a semi-infinite solid of revolution can be found in [6-9]. The results of the solution of a problem
on the profiling of the leading and trailing sections of a plane symmetric semi-infinite body which provides
the maximum value of M. are presented in [10].
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Fig. 1.

2. CALCULATION OF THE SUBSONIC FLOW AROUND A CONE USING
THE ZHUKOVSKII-ROSHKO SCHEME

We consider the axially symmetric subsonic flow of a compressible fluid around a circular cone using
the Zhukovskii-Roshko scheme. The fluid is assumed to be ideal and weightless and the flow is assumed
to be a steady, irrotational and isentropic. The numerical-analytic method for calculating such a flow,
which is proposed below, is similar to the method suggested in [4] for investigating the flow around a
cone using the Ryabushinskii scheme

In the half-plane of the cylindrical coordinates x, 7, the flow domain is bounded by the segment AB
of the x axis, the generatrix of the cone BC, which makes an angle 6, with the x axis, the arc CD of the
free surface and the half-line DA parallel to the x axis (Fig. 1a).

Suppose that A is the reduced velocity, 0 is the angle of inclination of the velocity to the x axis, and
A, and A, are the values of A at the infinitely distant point A and in CD, respectively, (A, < A, < 1),
T = My, Tg = AJA,. In the plane of the variables (t, 0), the rectangle £ = {(7,0)l0 <t < 15,0 < 6 <
6} corresponds to the flow domain (Fig. 1b; the segment BB, corresponds to the stagnation point B).

Let p be the density of the fluid, py the value of p at the stagnation point, v = p/py, and M be the
Mach number. Moreover, v and M are known analytic functions of 1,y = r/2, Y = vty, and y is a stream
function which is introduced using the relations

Tcos8=(m)"y,, TsinB8=—()"y,

(subscripts are used to denote partial derivatives with respect to x, r, T and 0).
We know [11, 4] that the functions y = y (1, 0) and y =y (1, 0) satisfy the relations

R=R(y, Y)=sin6Q’L-BQ+PQ, =0
L=L(yy=(1-M" Yoo+ W +(1+ M )1y, (2.1)
P=P(y)=sin*O[ty2 + (1~ M>)y2], Q=0Q(V, Y)=2Y+y,sinb
Yo =[(M? =)y sin@+ P/ Q+ 1y, cosB)(vi?)™
Yo = (TY, sinB+ g cos 0)(vt)™! 22)

The conditions

v =0 in ABB,CDA,y=0 inABB,,y =y, in AD (2.3)

where y,; is a certain positive constant, must be satisfied on the boundary of the domain X.
Using (2.2) and (2.3), Y can be expressed in terms of y

3]
Y=Y(y)=ycosB+[ (ty  +y)sin0d0 + viQ(1) (24)
0

Q(1)=0, t<l; Q)=y,;, 1>1

The problem therefore reduces to determining a function y (t, 8) which satisfies relations (2.1) and
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(2.4) in the domain X, the boundary condition (2.3) and the condition y > 0 when (7, 6) € Z.

The function y is represented in the form y = y® + y, where y? is the singular part of the stream
function which describes its behaviour in the neighbourhood of the image of the infinitely distant point
A. We will seek y° in the form of an asymptotic expansion in the small parameter 0 by putting

VO +y + st W =R (0)f, () (2.5)
By 1 (8)/ B () >0 for 650, k=1, 2,...
w=arctg(8/q), g=af, {=1-1, a=\/1_—_;l? (2.6)
and requiring that the following conditions are satisfied
Vv, =0 nra BAD, k=1, 2,...; ¥, >0, (1, 8)e X 2.7
Here, M, is the value of M when 1t = 1 (the Mach number of the free stream) and ® € (0, x) when (T,
¥ 'F‘l:))%.leading term of the asymptotic expansion (2.5) is sought in the form y; = 6™'fj(®) (» = const,
n > 0).

Using (2.6), any analytic function of T can be represented in the form of a power series in 8 with
coefficients which depend on . In particular

t=1+0"'0ctgw, 1-M? =gy +a,0 'Octgo+ 0(6%)
(1+M?) = ¢y +c, 0 '0ctgw + 0(6?) (2.8)
ag=a’, a =—(dM? /dt)|1=,, co=2-02, ¢;=¢co—a
_ 1613'2% (5)2.8) and the relations g = 67! sin © cos ®, ®, = -6~ sin® , it can be shown that, when y;
Y(w)=0""fi+007""), L(w))=L+AL, P(y,)=PR+AR
O(y)) =0 +40Q,, R(y))=R +AR
L =a®07" 2 ((n® +n)f, - 2nstfy + 2 £
B =002 (0’ f2 = 2nstf f{+ 52 f72), Q =07"[(2-n)f, + 5tf]]
R =007 (<21 £? + s1(6n® —2n + 4ns?) £, f; +
+52(20% = 2m% = 2n) £ = 2nsPe f, 0 2571
Qo =07"'[(n? =2n) f, + st(3-2n - 252) ! + 522 £
AL = 0™y, AP, = O(e—2n+l)’ AQ, =00~
R =00, - R0, + FQip =0(07""), AR =0(87")
where s = sin ©, £ = cos @, Q(y) = Q(v, Y(¥)), R(¥) = R(v, Y(y)).
On equating R;, the leading term of the expansion of R (y;) in powers of 8, to zero, we obtain a

differential equation in f;(®) from which, after making the substitution f; (@) = sin” 0@ (®), we arrive
at the equation

[4+(n? —4n)s212Q" +[(4+ 2n—n?)s? — 419’2 +
+st(@” +n’Q?Q") + (4n? - 2n%)s%¢* =0 (2.9)

From (2.7) we obtain the following conditions for ¢(w)
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e0)=9p(n)=0; ¢(w)>0, O<w<T (2.10)

Analysis shows that a unique solution of problem (2.9), (2.10) (apart from a constant factor for ¢)
exists: 7 = 1, ¢ = sin? . Hence

v, =07 sin’ @ = 02(8% +4%) 2.11)

In the plane of the variables 4 and 0, the curves y; = ¢ = const have the parametric representatlon
g = c!sin® 0 cos w, § = ¢! sin® @. They are similar closed curves with curvature of constant sign which
touch the q axis at the origin of coordinates and are symmetrical about the 0 axis.

It can be shown that, when y; = 0 5sin® ©

0
| v,:8d8 =0a(3cosw—cos’w—2p), p=sign(t-1)
0

Hence, by (2.4)
Y(y))= 0 'sin‘w+ a3cosm— cos’w— 2p)+ v Q(t)+0(0)

where v, is the value of v when © = 1. In order that the function Y(z, 6) should preserve its continuity
on crossing the line T = 1, it is necessary to put Q(1) = 2av,”, Q(t) = y; = 4av, when T > 1. Hence
Y(y,)=87"sin’ @+ 0a(3cos @~ cos’ @ +2)+O(0)
The function k,(0) in the representation y; = h(8)f;(®) could have been expressed in more general form than
(3 ) = 67" By putting /,(6) = 6™ (In 6)", for example, and employing the methods used aboye, y; = 67 (In 6)"
sin® @ would be obtained for arbitrary /n = const. The correctness of the result y; = 0~ 1sin’ @ is therefore not
obvious. In order to confirm its correctness it is necessary to show that it is possible to find the terms in the asymptotic
expansion (2.5) following y;.

Substituting ¥ = y; = 67! sin® @ into Eq. (2.1), terms of the order of 6~ which arise here cancel out
and a residual of the order of 6~ remains. It would be natural to seek the term following v, in expansion
(2.5) in the form y, = fo(w), requiring that, as a result of substituting y=w + y, into (2.1), terms of
the order of 6~ should be eliminated and a residual of the order of 8~ should be obtained. However,
analysis shows that, by proceeding along this path, it is impossible to obtam a function y, which satisfies
condition (2.7). ThlS suggests that, between the terms of the order of 67! and 1 in expansion (2. 2 there
is a term of an intermediate order which generates the additional terms of the order of 6™ in the
expression R (\|I°)

Let y; = 67!sin® 0. y, = In 8f,(®), Yo = y; + . Then

Y(y,)=07's’ +1n6f, +0(1), L(yy)=L +L, +AL,
P(Wo)=R+P+APR, Q(¥e)=0 +0,+AQ), R(¥o)=R, +AR,
L =0?073(25* -35%), B =a?0"2(4s°-3s%), Q =07"(4s’-3s5")
Bo =007 (165° - 425% +245'°), Q4 =072(85s" —245° +1557)

L, =a’02in6s’fy, P, =4a’ 07 In0s*y;, Q) =In6(2f, +s1f))
P =By + By, Opg = OF + 0O

By =400 n0[s* 2 £+ s%(3-55%) f7), PP = 4020725y
Q5¢ =07 nO[st(3-257)f; +s*° £), Ofp) =072, + 1))

AL, =0(87%), AR, =0(07"), AQ,=0()
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R, =6(20,Q L, + Q' Ly) — BeQ, — PR'0, + Qo P + Q5K A,

Ry, = 0(0'3 In@), AR, = 0(9'3) (s =sin®, t=cosm)

Putting R, = 0 and taking account of (2.7), we obtain the boundary-value problem for f>(®)
(—4s? +3s*) fr4 s1(4-9s7) f] 12522 f, = 0 (2.12)

L0 =f£,m=0

The solution of problem (2.12) has the form fy(w) = k(2 sin’ @ - sin* ®), where k is an arbitrary
constant.
Now, let y; = 67! sin® 0, y, = k In 8(2 sin® ® - sin* ®), ¥; = f3(0), Yo = Y1 + ¥z + ;. Then

Y(yo)=07's’ +kIn8(2s% ~s*)+ a3t — 1> +2) + £, + O(BIn )
L(yo)=L + L+ Ly+AL;, P(yo)=PR +P,+P+APR
O(Wo)=Q +0, + 03+ AQ;, R(yy) =Ry +AR,

L, = 40’072 In0s*>(1-4s%), P, =160%07 In6s%s*

Ly =072 [ak(65% —155* +85%) + 0~ a;s2(2 - 1552 +155*) - 3oy st +

+60s*1(4 - 552y +als? f], O, = kIn6(8s® —10s* + 45%)

P, =07 180" + o la s34 — 1252 + 95 ) + 0 ®ks® (8 — 1652 + 654y +

+402s* ], Q3 =203t =13 +2) + k(25% —s*)+ 2, +5tf{

Py =160*k87 In0s’1* (4 ~9s7), QY = 4k87" InBs%* (4 - 65)

PP =1602k072s%*, 082 = k07! (857 —10s5* + 455)

Py =072(360u* (3s” - 55°) + a7 a1(165° ~ 9657 +1685° —90s'! ) +

+0%k(325° ~ 13657 +160s° — 545" ) + 402552 £+ 40251 (3 - 55%) £

Qs =07 [—60s*t + k(45? —85* +455) + 503 = 252) fy + 5212 )

AL, =0(07'1n@), AP, =0(In28), AQ,=0(81nb)

Ry =0(20,0:L; + O Ly) — RQs — (PSP + Pig)Qy + Qi Py + (057 + QxR

Ry =0(87%), AR, =0(6In20)

Putting R3 = 0 and taking account of (2.7), we obtain the boundary-value problem for f3(w)

(14327457 (5t = 9) 4120 fy =a7a) Fy + o'y Fy + 07 F + oF, + K,
[(0)=fy(m) =0 (2.13)

F =3s(-t+8° +9r%), F,=3s’(t+61'+9¢°), F=-2F
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Fy=61(1-4r—412 —1*), F =-1-312+1* +15¢5
It can be shown that the functions

3 1
y(@)=1-14, yz(u))=t+3t3+5(l—t4)ln£ (2.14)

are solutions of the homogeneous equation which corresponds to (2.13) and y,(0) = yi(n) = 0,
¥2(0) = -y5(r) = 4. It can also be shown that one of the solutions of Eq. (2.13) has the form

[(0)=0a" a9, +0 " cgo, + a7 @, + 00, + ks (2.15)

1 3
9, =—5t—t3 +=1,

1 3 3 5
=—ft——t"+=1, ==2
) ] > 2 "] 9

3 1 8
@y =-2 —Et-—EP, 95 ==3+( -")Ins
and £2(0) = 4o, - 8/3k, f§ (1:) —8/3k

Imposmg the condition f5(0) = -(w) on the free parameter k, we obtain k = -3/4a, f = fJ(n) =
—20.. It is not difficult to verify that the function f;(0) = f5 o) + 1/20y, (), defined by relations (2.14)
and (2.15), is a solution of the boundary-value problem (2.13) when k = -3/4q.

Hence

v, = —%a In8(2sin?  —sin* @) (2.16)

;= sin? wcos(ol:a‘3a, (—2 +%sin2 u)) + a'lco(-§+ —:zi-sin2 (o)+

1+cos®

+0 ' (4 - 3sin? w)—a]+3a(1 - cos* ) In—————
4 (1-cos®)sin®

(2.17)

The functions y;, ,, Y3 defined by (2.11), (2.16) and (2.17), satlsfy condmons (2.7). By substrtutmg
¥ = y; + ¥ + 3 into Eq. (2.1), the terms of the order of 6™, 67 In 6, 6 which occur when this is
done are cancelled and a residual of the order of 67 In” 8 remams There are sufficient grounds to
suppose that the process of finding the functions y, by a successive reduction in the order of the residual
in Eq. (2.1) can be continued and that the functions.y;, y,, ;3 obtamed are the first terms of the
asymptotic expansion (2.5) (analysis shows that the function y; = 67(In 8)™ sin® @ when m # 0 cannot
serve as a basis for finding the successive terms of expansion (2.5)).

We shall assume that the function y? has been found to a sufficiently high accuracy. The function
x = y — y° must serve as a solution of the boundary-value problem

L) =Ny’ +0)- L(y°), (1.0)eZ
(2.18)
N(W)=(RQ~PQy)/(Q%sin@); x=-y° in ABB,CDA

Using the techniques described in [4], problem (2.18) can be reduced to solving an iterative sequence
of linear difference equations. The accuracy of the resulting solution can be checked by comparing the
values of y(t, 0) by integrating relations (2.2) along different trajectories. Having determined y(t, 6)
and r(t, 8) using the method described and x(t, 0) by integrating the expression [11, 4]

x, =[(M? = 1)yy cos8 — Ty, sinB +ctgOP / Q)(rvi?)™!
(2.19)
xg =(TY, cos0 - Yy sinO)(rve)™

there is no difficulty in finding all the necessary flow characteristics.
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Suppose that v,, p, are the velocity and density of the fluid at infinity, p is the pressure, p, and p. are
the values of p at infinity and on the free surface, Ry is the radius of the base of the cone, R is radius
of the cylinder to which the free surface is joined, C, is the drag coefficient of the cone and o is the
pressure coefficient behind the cone

Ry -
C, =40, V2R | (p-poyrdr, o= 2Lz PO)
0 pa Va
(The integral is evaluated along the generatrix BC.)
The drag of the solid of revolution formed by a semi-infinite cylinder and the leading part which is
smoothly joined to it, around which there is a continuous axially symmetric flow of an ideal gas, is equal
to zero. It follows from this that

C, = GRYR}, (2.20)

It is convenient to use relation (2.20) as an additional check on the accuracy of the solution.

3. SOLUTION OF PROBLEM B FOR A PERFECT GAS WITH AN
ADIABATIC INDEX v = 1.4

The flow of an axially symmetric potential isentropic stream of an ideal perfect gas with an adiabatic indexy =
1.4 around a disc (8 = n/2) of radius R, was calculated using the Zhukovskii~Roshko scheme by the method which
has been described, subject to the condition M, = 1 for a series of values of M, = M. in the range [0.5, 0.88) (M,
and M, are the values of the Mach number at infinity and on the free surface). A mesh I xJ = 50 x 100 was employed
here in the domain of variation of the transformed variables of the velocity hodograph &, n (see [4]). The error
with which condition (2.20) is satisfied in the case of the results obtained increases monotonically as M, increases
from 0.01% when M, = 0.5 up to 0.8% when M, = 0.88 (this sets an upper limit on the range of computational
investigations).

The basic geometric characteristics of the leading parts of optimal semi-infinite solids of revolution are presented
in Table 1. The values of parameter 6 = 2(p, — p.)(p.V, ), which characterizes the pressure on the lateral surface
of the leading part of an optimal solid of revolution, can be calculated using the formula

[' -
o=—2 1-( 2 +Y_1M3)

yM}l Y+1 y+1

The contours of the leading parts of optimal bodies in the (x, 7) meridian plane are shown in Fig. 2 for values
of M. = 0.6; 0.7; 0.75; 0.8; 0.83 (curves 1-5 respectively; R = 1).

In the case of an arbitrary solid of revolution, which is formed by a semi-infinite cylinder and a leading part
which is smoothly joined to it, around which there is a continuous axially symmetric flow of a perfect gas with y =
1.4, relations of the form

“MuSGI(RIL), Mi<G,(R*1S"), Mi<G3(RPIW")

Table 1

M. LRy LR SR wiR?

05 026353 022745 0,00895 005428
0.6 0,56128 0.43985 0,02692 0,15982
0.7 120394 0.82312 007202 0.41639
075 1.81351 1.13305 0.11591 0,65974
0.8 283888 1.58575 0.18753 1.04883
0.83 3,82819 196977 0.25305 1.39888
0,86 534163 249259 034694 1.89381

0.88 6.84913 296118 0.43418 2.34868
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Table 2

M. a as as ay as ag as

0,5 ~0,19488 0.05616 0.06095 -0,15976 0,18489 -0.11279 0,02852
0,6 -0.28986 0.02999 022089 -0.44649 048133 -0,28040 0.06822
0,7 -0.38834 -0.07723 0.59865 -1,09678 1,14069 -0.64622 0.15294
0,75 -0.43515 -0,17990 092127 ~1,65434 1.71013 -0,96323 0.22600
0.8 -0.47634 -0.34008 1.40790 -2.50998 2,60348 -1,47173 0.34535
0,83 -0.49726 -0.47022 1.79171 -3.18016 329725 -1,86126 0.43449
0,86 -0.51402 -0,63263 225600 -3.97268 4,09445 -2.29189 0,52741
0,88 -0.52156 -0,77125 2,67094 —4.73264 4,92033 -2,77498 0.64150

hold, where Gy, G, and G3 are monotonically decreasing functions of their arguments and a rigorous equality is
only satisfied in the case of optimal bodies. The formulae

G, =(1-0,33587; +0.901371% -0.197901))™", 1, =(R/ Ly

G, =(1-0.533195; +0.69406s% —0.11091s7)~!, 5, =(R?/§")% (3.1

Gy =(1-0,76759w, +1.30968w? - 0.28216w})™", w, =(R>/ w")%s
are constructed using an approximation of the data from Table 1 and taking account of the fact that G4(0) = G»(0)
- %gogr;)rl of approximation of the calculated data in Table 1 by formulae (3.1) does not exceed 0.08% for G,
0.14% for G, and 0.16% for G;.

In the neighbourhood of the points C and D (see Fig. 1a, b) y ~ a(t - 1)(8 — 6;) and y ~ b(T — 1)@, respectively
(a and b are certain constants). Hence, in accordance with (2.2) and (2.19) when 6, = /2 on the arc CD

x/R0=0(u3), r/Ro—l=0(u2) when ;-0
3 3.2)
x/L-1=0(8%), r/L-R/L=0(%) when 50

where . = 1/2 -6 (x = 0, r = Ry at the point C andx = L, r = R at the point D).
We now introduce the parametric variable f, assuming x/L = p(a, B)/p(a, 0) in CD, where

a*cosp __ 4 n1+2acos|3+a2
2(1-2a%cos2B+a*) 8(1+a?) 1-2acosP+a’

p(a.p)=

and a is a fixed parameter in the range (0, 1) and B varies in the range [0, /2]. It can be shown that p(c, B) is a
monotonically decreasing function of B, p(a, 7/2) = 0 and p(a, B) = Q((n/2 - B)* as B — /2 and p(a, B) - p(a, 0)
= O(B?) as B — 0. By (3.2), = O(B) when B — 0 and n/2 - 8 = O(n/2 - B) when B — /2. The function f(B) in
the representation 7/R = f(B) must therefore satisfy the conditions f(0) = 1, f’(B) = O(B?) as B — 0 and f(n/2) =
Ry/R, f(B) = O(n/2 - B) as B — n/2.

From the results of the calculations, taking account of what has been said above, approximate formulae were
constructed for determining the shape of the leading parts of optimal semi-infinite solids of revolution in axially
symmetric flow of a perfect gas when y = 1.4 in the form

X _pOIP L r R L 2k
Ry p(0,3;0) Ry’ Ry —Ro(HE, asin™ "B\, BelO,r/2] (33)

The values of a, are shown in Table 2 (L/Rq and L/R are shown in Table 1).

Suppose the g, is the maximum relative error in the approximation of the quantity » by formulae (3.3) with respect
to B (for fixed M.) and that &, is the maximum error with respect to B in the approximation of the quantity 0: €,
= |0 — arctg (rp/xp) | As M. increases, running through the values indicated in Tables 1 and 2, the magnitudes of
g; and &, increase monotonically: the first from 10~ to 7 x 10~ and the second from 2 x 107 to 15 x 107, The use
of formulae (3.3) in the case of a spline approximation of the data from Tables 1 and 2 for intermediate values of
M. usually leads to an increase in the values of €; and &,, but g; does not increase by more than an order of magnitude
while €, increases by factor of no more than 2. This enables one to construct optimal semi-infinite solids of revolution
in an axially symmetric flow of a perfect gas when y = 1.4 for arbitrary values of M. lying in the range [0.5; 0.88].

Computational investigations were carried out in [4-9] to determine the critical Mach number for certain shapes
of the leading part of a semi-infinite solid of revolution in a flow of perfect gas with y = 1.4. A half (up to the
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Fig. 2.

centre section) of the solid of revolution obtained in [12] as a result of the solution of a problem on the cavitational
flow of an axially symmetric stream of an incompressible fluid around a disc or sphere, using the Ryabushinskii
scheme, was considered as the leading part of the body (using the first initials of the authors of [12] and {7-9], for
brevity, we shall call such bodies KVK bodies with plane and spherical bluntness). “Parabolic” bodies with a generatrix
equation /R = [(x/L)(2 ~x/L)]", where n is a positive constant, when 0 <x < L and 7/R = 1 whenx > L were also
considered. It was established that KVK bodies with a plane bluntness possess the greatest critical Mach number
for a wide range of variation in the parameter L/R among the listed shapes of bodies.

Thus [9), when L/(2R) = 0.8672M. = (.786 for a KVK body with plane bluntness, M. = 0.759 for a KVK body
with spherical bluntness, M. = 0.752 for a parabolic body when n = 0.3 and M. = 0.742 for a parabolic body when
n = 0.5. Computational and experimental investigations have also been carried out to determine the drag of the
above-mentioned solids of revolution when L/(2R) = 0.8672 in an air flow and it was established that KVK bodies
with plane bluntness have minimum drag over the range of free-stream Mach numbers M. < M, < 0.97.

It is obvious that biodies, for which the shape of the leading section is obtained from the solution of the problem
of the flow of an incompressible fluid around a disc using the Ryabushinskii scheme, are not absolutely optimal
with respect to M. and differ from bodies whose construction is dealt with in this paper. For instance, in the case
of a body with a length of the leading section L/(2R) = 0.8672, the method developed in this paper gives max M.
= (.8127. The dimensionless coordinates x/R and ry/R of the contour of the leading section of a KVK body with
plane bluntness when L/(2R) = 0.8672, borrowed from [9], are presented below.

xir 0 0,0710 0,2656 03881 05593  0.7995 1.1350 1.6054  1.7344
r/R 05420 0.6396 0.7572 08070 0.8607 09165 0.9669 0.9984 1
AriR 0.0016  0.0075 0,0145 00168  0.0176  0.0170 0.0122 0.0020 0

The values of the coordinates 7/R of the contour of the body which is optimal with respect to M. when L/(2R)
= (.8672 are obtained by subtracting the corresponding values of Ar/R from r/R. The body which is optimal with
respect to M. lies completely within a KVK body with plane bluntness.
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