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The problem of constructing the leading part of a semi-infinite solid of revolution with an axially symmetric flow of an ideal 
(inviseid and non-heat-eanducting) gas around it which has the ~ u m  critical Maeh number is considered. A numerical-analytic 
method is proposed for solving this problem. Results are presented for the case of a perfect gas with an adiabatic index ¥ = 1.4. 
@ 1997 Elsevier Seieno~ Ltd. All fights reserved. 

Among all the bodies which satisfy certain geometric constraints, bodies which achieve the maximum 
possible critical Mach number do not experience wave drag in the maximum range of free-stream 
velocities. Below, we shall refer to such bodies as optimal bodies. 

The structure of plane symmetric optimal bodies and optimal solids of revolution in a flow of an ideal 
gas was investigated for the first time in [1] and the investigations were subsequently extended in [2]. 
It was established tl~at, for an extensive class of geometric constraints, the generatrices of optimal bodies 
consist of rectilinear segments and segments in which the gas velocity is constant and equal to the critical 
velocity. In particular, the problem (we shall call it Problem A) of constructing the optimal solid of 
revolution with a specified thickness-to-length ratio was formulated and it was shown that Problem A 
reduces to the problem of the axially symmetric gas flow around a disc at the critical velocity on the 
free surface in accordance with the Ryabushinskii scheme [1]. An efficient numerical-analytic method 
of calculating the ideal gas flow past a cone with an arbitrary apex angle in accordance with the 
Ryabushinskii scheme has been proposed in [4]. A solution of Problem A for an ideal gas with an 
adiabatic index T --: 1.4 has been obtained in [5]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We consider the following problem (which we shall call Problem B). Suppose that an ideal gas flows 
around a circular right cylinder and that the flow is directed along its axis. It is required to deform the 
leading part of the cylinder (the part adjacent to the front end) so that there is a continuous flow around 
the resulting solid of revolution at the maximum possible value of the critical Math  number M. when 
one of the conditions is satisfied 

L / R < ~ I o ,  S ' l R 2 < ~ m o ,  W ' l R 3 < - n o  (1.1) 

Here R is the radius of the cylinder, L is the length of the leading part of the body (the deformed apart 
of the cylinder), S'  and W' are the area in the meridian half-plane and the volume which are lost during 

m0, no are given constants. Hence S = L R  - S, W" = rd.,R - W, the deformation of the cylinder and 10, 2 
where S and W are the area in the meridian half-plane and the volume of the leading part of the body. 
The inequalities (1.1) limit the loss of "imbeddability" of the body which originally existed. 

Using the comparison theorem [1, 2], it can be shown that the leading part of an optimal semi-infinite 
solid of revolution which satisfies one of conditions (1.1) is formed by a disc and the stream surface 
which joins it to the cylinder, at each point of which the gas velocity is equal to the critical velocity. 
Problem B therefore reduces to the problem of the axially symmetric gas flow around a disc at the critical 
velocity on the free surface according to the Zhukovskii-Roshko scheme [3]. 

Note that the re.,;ults of calculations of the critical Mach number Mo for certain shapes of the leading 
part of a semi-infinite solid of revolution can be found in [6-9]. The results of the solution of a problem 
on the profiling of the leading and trailing sections of a plane symmetric semi-infinite body which provides 
the maximum value of Mo are presented in [10]. 
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Fig. 1. 

2. C A L C U L A T I O N  OF T H E  S U B S O N I C  F L O W  A R O U N D  A C O N E  U S I N G  
T H E  Z H U K O V S K I I - R O S H K O  S C H E M E  

We consider the axially symmeiric subsonic flow of a compressible fluid around a circular cone using 
the Zhukovskii-Roshko scheme. The fluid is assumed to be ideal and weightless and the flow is assumed 
to be a steady, irrotational and isentropic. The numerical-analytic method for calculating such a flow, 
which is proposed below, is similar to the method suggested in [4] for investigating the tto~v around a 
cone using the Ryabushinskii scheme 

In the half-plane of the cylindrical coordinates x, r, the flow domain is bounded by the segment AB 
of the x axis, the generatrix of the cone BC, which makes an angle 00 with the x axis, the are CD of the 
free surface and the half-line DA parallel to the x axis (Fig. la). 

Suppose that ~. is the reduced velocity, 0 is the angle of inclination of the velocity to the x axis, and 
and Lc are the values of 2t at the infinitely distant point A and in CD, respectively, ( ~  < ~ ~< 1), 

x = k/'ka, x0 = ~ / ~ .  In the plane of  the variables (x, 0), the rectangle E = {(x, 0)10 < x < x0, 0 < 0 < 
%} corresponds to the flow domain (Fig. lb; the segment BB1 corresponds to the stagnation point B). 

Let p be the density of  the fluid, P0 the value of p at the stagnation pgint, v = P/P0, and M be the 
Math number. Moreover, v and M are known analytic functions of  x,y = r'/2, Y = vxy, and ¥ is a stream 
function which is introduced using the relations 

xcos0 = (rv)-lWr, xsin0 =- ( rv ) - I  ~x 

(subscripts are used to denote partial derivatives with respect to x, r, x and 0). 
We know [11, 4] that the functions ¥ = ¥ (% 0) andy = y (x, 0) satisfy the relations 

R =  R(~, Y)=s inOQ2L-PoQ+PQo = 0  

L = L(~) '= (1 - M 2 )~/00 + q;2~l/rt + (1 + M 2 )'DJ,/x (2.1) 

P = P ( ~ ) = s i n 2 0 [ ' c 2 ~ + ( 1 - M 2 ) ~ 2 ] ,  Q = Q ( ~ ,  Y ) = 2 Y + ~ o s i n 0  

y~ = [(M 2 - 1)~o sin 0 + P / Q + x~x cos 0](vx 2 )-1 

Yo = (xyx sin O + Us cos 0)(vx) -I (2.2) 

The conditions 

= 0 in ABBICDA , y = 0 in ABBI, y = Yd in AD (2.3) 

where Yd is a certain positive constant, must be satisfied on the boundary of  the domain Z. 
Using (2.2) and (2.3), Y can be expressed in terms of ¥ 

0 
Y = Y(~) = ~ cos 0 + S (x¥~ + ~)sin (}dO + vxQ(x) (2.4) 

0 

~(z)  = 0, x < 1; g~(x) = Yd, X > 1 

The problem therefore reduces to determining a function ¥ (% 0) which satisfies relations (2.1) and 
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(2.4) in the domainL Z, the boundary condition (2.3)and the condition ¥ > 0 when (% 0) ~ Z. 
The function ¥ is represented in the form ¥ = ~ + g, where ~t' is the singular part of the stream 

function which desca'ibes its behaviour in the neighbourhood of the image of the infinitely distant point 
A. We will seek ¥0 in the form of an asymptotic expansion in the small parameter 0 by putting 

~0 = ¥ t  +~t2 + ~ 3 +  .... Yk =hk(O)fk(co) (2.5) 

ht+l(O)lhk(O)--->O for 0--*0, k = l ,  2 .... 

co=arctg(0/q),  q=ot ; ,  ; = z - l ,  o t=~] l -M~ (2.6) 

and requiring that the following conditions are satisfied 

Yk = 0  na BAD, k = l ,  2 .... ; Wi >0, (X, 0 ) ¢ Z  (2.7) 

Here, Ma is the value of M when "~ = 1 (the Mach number of the free stream) and to ¢ (0, ~) when (% 
0 ) ~  X. 

The leading term of the asymptotic expansion (2.5) is sought in the form W1 = 0-~fl(co) (n = const, 
n > 0 ) .  

Using (2.6), any analytic function of x can be represented in the form of a power series in 0 with 
coefficients which depend on co. In particular 

z=l+oCI0ctgco,  I - M  2 =ao+al(x-IOctgco+O(O 2) 

X(1 + M 2 ) ----" Co + Cl Gt-Io c tg  co + 0(0 2 ) (2.8) 

a o =0~ 2, 01 = - ( d M  2/dz)lx= l, Co = 2 - c t  2, c i =c  o - a  t 

Using (2.8) and the relations coo = 0 -1 sin co cos to, ak = --¢tO -1 sin 2 to, it can be shown that, when ¥1 
= e-~fl(CO) 

Y(~l ) = O-" f l  + O( O-"+l ), L(¥1 ) =/ - I  + A/q, P(V l  ) = Pt + API 

Q(V1 ) = QI + AQi, R(WI ) = Rt + ~kRI 

L I = o~20-n-2[ (n2  + n ) f  l - 2ns~'+ S2fl "] 

Pi =°t20-2"(n2f12--2ns~f:+s2fll'2), QI--O-n[(2-n) fJ  +s~'] 

PI0 = 0t20-2"-I (-2n3fl 2 + st(6n 2 - 2n + 4ns 2 )flfl" + 

+s2(2/2 _ 2nt 2 - 2n)fl "2 - 2ns2t2flf('+ 2s3~fl'fl " ] 

QIo = 0-n-I [( n2 - 2 , ) f l  + st(3 - 2n - 2s 2)A'+ s2t2f{" 1 

ALl = O(0-"- ') ,  ~ = O(0 -2~+'), AQ, = O(0 -n+') 

Ri = OQ3L~ - ~0Qt + ~Q~o = O[0 -3~-* ), z ~  = O(0 -3~) 

where s = sin co, t = cos co, Q(~/) = Q(W, YOg)), R ( ¥ )  = R(¥ ,  Y(¥) ) .  
On equating R,: the leading term of the expansion of R (¥1) in powers of 0, to zero, we obtain a 

differential equation infl(co) from which, after making the substitution f l  (co) = sin" o~p (co), we arrive 
at the equation 

[4 + (n 2 - 4n)s 2 ]tp2tp " + [(4 + 2n - n 2 )s 2 - 4]q~ "2 + 

+st((P "3 + n2(p2~0 ") + (4n 2 - 2n 3 )s2~03 = 0 (2.9) 

From (2.7) we obtain the following conditions for 9(co) 
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q~(0) = 9 (n )  = 0; 9(to) > 0. 0 < to < n (2.10) 

Analysis shows that  a unique solution of  p r o b l e m  (2.9), (2.10) (apar t  f rom a constant  factor  for  9 )  
exists: n = 1, 9 = sin2 to. H e n c e  

• l = O-I sin3 to = 02( 02 + q 2 ) - ~  (2.11) 

In the p lane  of  the var iables  q and 0, the  curves ¥1 = C = const  have the  pa ramet r i c  represen ta t ion  
q = c -1 sin 2 to cos to, 0 = c -1 sin 3 to. They  are  similar  closed curves with curvature  of  constant  sign which 
touch  the q axis at  the origin of  coordina tes  and  are symmetr ica l  abou t  the 0 axis. 

I t  can be shown that,  when  ~/1 = 0-1sin3 to 

Hence ,  by (2.4) 

0 
~l/ix0d0 = 11(3costo - cos 3 to - 2p),  p = sign(X - 1) 

0 

Y(WI ) = 0"l sin3 to + 11(3 c o s t o -  cos 3 to - 2p)  + v ~ ( x )  + O(0) 

where  va is the value of  v when  x = 1. In  o rde r  that  the funct ion Y(x, 0) should preserve  its continuity 
on crossing the line x = 1, it is necessary to pu t  f~(1) = 211Va -1, f~(x) = Yd = 411Va -1 when  x > 1. H e n c e  

Y(VI ) = 0-1 sin3 to + 11(3 cos to - cos 3 to + 2) + O(0) 

The function hi(0)  ill the representat ion ¥1 = hl(0ffl(to) could have been expressed in more general  form than 
h 1.(30 ) = 0 -n. By putting hi(0) = 0 -n (In 0) m, for example, and employing the methods used above, ¥1 = 0 -1 (in 0 )  m 
sin to would be obtained for arbitrary m = const. The correctness of the result ¥1 = 0-1sin3 to is therefore not 
obvious. In order to confirm its correctness it is necessary to show that it is possible to find the terms in the asymptotic 
expansion (2.5) following ¥1. 

Substituting ~ = ¥1 = 0-1 sin3 to into Eq.  (2.1), t e rms  of  the  o rde r  of  0 -4 which arise here  cancel out  
and a residual of  the order  of  0 -3 remains.  I t  would  be natural  to seek  the t e rm  following ¥1 in expansion 
(2.5) in the fo rm ¥2 = f2(to), requir ing that,  as a result  o f  substi tut ing _~ = ~1 + ¥2 into (2.1), t e rms  o f  
the  o rder  of  0 -" should be  e l iminated  and a residual  o f  the o rder  of  0- should be  obtained.  However ,  
analysis shows that,  by proceeding  along this path ,  it is impossible  to obta in  a function ~2 which satisfies 
condi t ion (2.7). This  suggests that,  be tween  the  t e rms  of  the  o rde r  of  0 -1 and  1 in expansion (2.5), there  
is a t e rm  of  an in te rmedia te  o rder  which genera tes  the  addi t ional  t e rms  of  the order  of  0 -° in the  
expression R (.~0). 

Le t  ¥1 = 0-1 sin3 to. ~2 = In Of2(to), ~0 = ~/1 + ¥2" Then  

Y(¥0)  =O-Zs3 +lnOf2 +0(1) ,  L ( ¥ 0 ) =  L I + L  2 + A L  2 

P(¥o) = Pl +~ +AP2, Q(Wo)= Ql +Q2 +AQ2, R(¥o)= R2 +AR2 

LI = 1120-3( 2s3 - 3s5), PI = 1120-2 ( 4s6 - 3s8), Qt = 0-1 ( 4s3 - 3s5) 

PIo = 1120-3( 16s6 - 42sS + 24st°),  Qlo = 0-2( 8s3 - 24s5 + 1 5 J )  

1-'2 =1120-2 lnOs2f2 ", />2 = 4112 O-I lnOs40¢2 ", Q2 = lnO(2f2 +s0¢2 ") 

P2 I) = 41120-2 lnO[sSt2f2 "+s4t(3 5s2)f2"], "20 0 - a(2) = 41120-2s40¢2 " 

Q(l) = 0-1 2o lnO[st(3-2s2)f2+s2t2f2"], s~20r~<2) = 0-1(2f2 +stf~) 

A /_ ,2 =0 (0 -2 ) ,  AP2=O(O-I), AQ2=O(I ) 
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R2 =O(2QIQ2L l + Q~l.,z)_ pioQ 2 oo),.~ ,ao)p - "20 ~i + QIoP2 + ~2e , i  

R 2 = 0 ( 0  -3 In0), AR 2 = O ( 0  - 3 )  ( s  = s i n t o ,  t =cos to )  

Putt ing R 2 = 0 and taking account  of  (2.7), we obtain the boundary-value p rob lem for  f2(to) 

(--4S 2 + 3s 4 )f2"+ st(4 - 9 S  2 )f~ - 12S2t2f2 = 0 (2.12) 

A (o) =f2 (~) = 0 

T h e  solut ion o f  p rob lem (2.12) has the form f2(to) = k(2 sin 2 co - sin 4 to), where  k is an arbi t rary 
constant .  

Now, let ¥1 = 0-1 sin 3 to, ¥2 = k In 0(2 sin 2 co - sin 4 to), ¥3 = fa(to), Vo = V1 + ¥2 + ¥3. T hen  

Y(~o) =O-Is3 + k i n 0 (  2s2 -s4)+o~( 3 t - t3  ÷ 2) + f3 + O(01n0) 

L ( ¥ 0 )  = L! + L2 + L3 + A/-,3, PfVo)=PI+P2+P3+AP3 

Q ( ¥ o )  = QI + Q2 + Q3 + AQ3, R ( ¥ o )  = R3 + AR3 

/-,2 = 40~2k0-2 l n 0 s 2 t 2 ( 1 - 4 s 2 ) ,  P2 = 16°t2k0-1  ln0sSt4 

/-,3 = 0 -2 [ o t 2 k ( 6 s  2 - 15s  4 + 8s  6 ) + ot-lats2t(2 - 15s  2 + 15s  4)  - 30tCoS4t + 

+6(XS4t( 4 - 5S2 ) + ~2s2f3'], 02 = k In 0(8s 2 - 10s 4 + 4s 6 ) 

P~ := 0-1[18(xs7t 3 +ct-lalsSt(4 - 12s 2 + 9s4) + t22ks5(8 - 16s 2 + 6s4 )+  

+4°~2s4~f3"], Q3 = 2~(  3 t - t 3  + 2 ) + k (  2s2 - s 4 ) + 2 f 3  +sO~3" 

)2 I) = 16~2k0-2 ln0sSt4(4 9s2), ~2o 0 - r~(l) = 4k0-1 ln0s2t4( 4 - 6s2) 

P2 (2) = 16ct2kO-2sSt4, ~20 0 /'1(2) = k0-1(882 --10S4 + 4 S 6 )  

e30 = 0-2  [ 360tt3 ( 3s7 - 5S9 ) + ~-Ialt(16s5 -- 96s7 + 168s 9 - 90s 11 ) + 

+a2k(  32s5 - 136s7 + 160s9 - 5 4 s l l  ) + 40t2sSt2f( "+ 4tX2S4t( 3 -- 5s2)f3'] 

Q3o = 0-1 [ -6txs4t + k( 4s2 - 8s4 + 4s6 ) + st(3 - 2s 2 ) f (  + sEtEf3"~ 

AL3 = O(0 -l ln0), ~ = O(ln 2 0), AQ a = O(01n0) 

R3 = O(2Q, Q3L1 + Q~L3) - PloQ3 - (,°2(o 2) + P30 )Q, + Q,o~ + (Q9(2o) + Q3o )/]1 

R 3 = O ( 0  -3), AR 3 = O ( 0  -2in 20) 

Putt ing R 3 = 0 ~md taking account  of  (2.7), we obtain the boundary-value prob lem for  f3(¢0) 

( l+3t2) f ( '+s- l (5 t -9 t3) f ]+12t2  A ----. o~-3alF1 + o~-IcoF2 + o~-IF3 q- 0t.F 4 + k F  5, 

A(o) =:A(~) = o 

F 1 = 3 s  2 ( - t + 8 t  3 + 9 t  5), F 2 = 3 s  2 ( t + 6 t  3 + 9 t  5), ~ = - 2 F  t 

(2.13) 
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F 4 = 6 t ( 1 - 4 t - 4 t  2 - t4 ) ,  F 5 = - l - 3 1 t  2 + t  4 +15t 6 

It can be shown that the functions 

Yl (to) = 1 - t 4, Y2 (to) = t + 3t 3 + 3 (1 - t 4) In l - t l  + t (2.14) 

are solutions of the homogeneous equation which corresponds to (2.13) and yl(0) = yl(n) = 0, 
y 2 ( 0 )  = -yz(n) = 4. It can also be shown that one of  the solutions of Eq. (2.13) has the form 

fo  (to) = tx-3attPl + ¢t-lc0t02 + ¢t-ltp3 + 0~04 + kt05 (2.15) 

1 t3 3 t5  ' tP2 t p l = - - - t -  + =-t - l t3+3t5  ' 9 3 = - 2 ~ j  
2 2 2 2 

8 t04 = - 2 - 3 t - I t 3 ,  COS= + ( l - t 4 ) l n s  
2 2 - ' 3  

and f° (0)  = ~ - 8/3k, fo(g) = -8/3k. 
Imposing the conditionf~(0) = --f3°(g) on the free parameter k, we obtain k = -3/4ot, f ° = -f°(n) = 

-2ct. It is not difficult to verify that the functionfa(to) = f o  to) + 1/2¢9, 2 (to), defined by relations (2.14) 
and (2.15), is a solution of the boundary-value problem (2.13) when k = -3/4(t. 

Hence 

~ 2  = - 3 Ct In 0(2 sin 2 to - -  sin 4 to) ( 2 . 1 6 )  
4 

V3 =sin2 tocosto[ct-3 a,(-2 +3sinZ to]+cUlCo(-5+3sin2 to) + 

+ _l (4_3s in2to)_Ct]+3Ct( l_cos4to) ln  l+cos to  
(1 - cos to)sin to 

(2.17) 

The functions ¥1, V2, ¥3 defined by (2.11), (2.16) and (2.17), satisfy conditions (2.7). By substituting 
= ¥1 + ¥2 + ¥3 into Eq. (2.1), the terms of the order of 0 -4, 0 -3 In 0, 0 -3 which occur when this is 

done are cancelled and a residual of the order of 0 -2 In2 0 remains. There are sufficient grounds to 
suppose that the process of finding the functions Vk by a successive reduction in the order of the residual 
in Eq. (2.1) can be continued and that the functionsv1, ~2, ¥3 obtained are the first terms of the 
asymptotic expansion (2.5) (analysis shows that the function ¥1 = 0-1( In 0) m sin3 to when m # 0 cannot 
serve as a basis for finding the successive terms of expansion (2.5)). 

We shall assume that the function ~0 has been found to a sufficiently high accuracy. The function 
Z = ¥ - ~ must serve as a solution of the boundary-value problem 

L(Z) = N ( ¥  ° + Z ) -  L(V°), (x,0) ~ Z 

N(~)=(PoQ-PQo)I(Q2sinO); Z = - ~  ° in ABBICDA 
(2.18) 

Using the techniques described in [4], problem (2.18) can be reduced to solving an iterative sequence 
of  linear difference equations. The accuracy of the resulting solution can be checked by comparing the 
values ofy(x, 0) by integrating relations (2.2) along different trajectories. Having determined ¥(x, 0) 
and r(x, 0) using the method described and x(x, 0) by integrating the expression [11, 4] 

(2.19) 
xx = [(M 2 - i)~0 cos0 - x¥x sin 0 + ctg0P / Q](rvx 2)-t 

x o = (x¥~ c o s O - ¥ o  S in O)(rvx) -I 

there is no difficulty in finding all the necessary flow characteristics. 
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Suppose that va, Pa are the velocity and density of the fluid at infmity, p is the pressure, pa andpc are 
the values o fp  at infinity and on the free surface, R0 is the radius of the base of the cone, R is radius 
of the cylinder to which the free surface is joined, Cx is the drag coefficient of the cone and o is the 
pressure coefficient behind the cone 

Cx = 4 (PaV2R~) - I~  2(Pa --Pc) 
0 (p  -- Pc)rdr' ff = PaVa 2 

(The integral is evaluated along the generatrix BC.) 
The drag of the solid of revolution formed by a semi-infinite cylinder and the leading part which is 

smoothly joined to it, around which there is a continuous axially symmetric flow of an ideal gas, is equal 
to zero. It follows from this that 

Cx= oR21R2o (2.20) 

It is convenient to use relation (2.20) as an additional cheek on the accuracy of the solution. 

3. S O L U T I O N  O F  P R O B L E M  B F O R  A P E R F E C T  G A S  W I T H  A N  
A D I A B A T I C  I N D E X  y = 1.4 

The flow of an axially symmetric potential isentropic stream of an ideal perfect gas with an adiabatic index y = 
1.4 around a disc (00 = x/2) of radius R0 was calculated using the Zhukovskh-Roshko scheme by the method which 
has been described, subject to the condition Mc = 1 for a series of values ofMa ~ M.  in the range [0.5, 0.88] (Ma 
and M e are the values of the Mach number at infinity and on the free surface). A mesh I x J = 50 x 100 was employed 
here in the domain of variation of the transformed variables of the velocity hodograph ~, I] (see [4]). The error 
with which condition (2.20) is satisfied in the case of the results obtained increases monotonically as M, increases 
from 0.01% when Ma -- 0.5 up to 0.8% when Ma = 0.88 (this sets an upper limit on the range of computational 
investigations). 

The basic geomet~ric characteristics of the leading parts of optimal semi-infinite solids of revolution are presented 
in Table 1. The valw:s of parameter o = 2(p a -pc)/(paVa2), which characterizes the pressure on the lateral surface 
of the leading part of an optimal solid of revolution, can be calculated using the formula 

] 
The contours of the leading parts of optimal bodies in the (x, r) meridian plane are shown in Fig. 2 for values 

ofM. = 0.6; 0.7; 0.75; 0.8; 0.83 (curves 1-5 respectively; R = 1). 
In the ease of an arbitrary solid of revolution, which is formed by a semi-infinite cylinder and a leading part 

which is smoothly joined to it, around which there is a continuous axially symmetric flow of a perfect gas with 7 = 
1.4, relations of the form 

• M , < G I ( R I L ) ,  M , < G 2 ( R  2IS ' ) ,  M,<G3(R  31W') 

Table 1 

g. U ~  UR S'lS a W'l~ 

0.5 026353 0.22745 0,00895 0,05428 
0,6 0,56128 0.43985 0,02692 0,15982 
0.7 120394 0,82312 0,07202 0.41639 
0.75 1,81351 1.13305 0,11591 0,65974 
0.8 2,83888 ! .58575 0.I 8753 1.04883 
0.83 3,82819 1,96977 025305 i .39888 
0,86 5.34 ! 63 2.49259 0.34694 1,89381 
0.88 6,849 i 3 2.96 ! 18 0,43418 2.34868 
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Table 2 

M ,  a I a 2 a 3 a 4 a 5 a 6 a 7 

0,5 -0,19488 0 . 0 5 6 1 6  0 . 0 6 0 9 5  -0.15976 0,18489 -0.11279 0,02852 
0,6 -0.28986 0 , 0 2 9 9 9  022089 -0.44649 0,48133 -028040 0.06822 
0.7 -0.38834 -0.07723 0 . 5 9 8 6 5  -1.09678 1.14069 -0.64622 0.15294 
0,75 -0.43515 -0,17990 0.92127 - 1,65434 1.71013 -0,96323 0.22600 
0,8 --0.47634 -0.34008 1.40790 -2.50998 2.60348 -1.47173 0.34535 
0.83 -0.49726 -0.47022 1.79171 -3.18016 329725 -I,86126 0.43449 
0,86 -0.51402 -0.63263 225600 -3.97268 4,09445 -229189 0,52741 
0,88 -0.52156 --0,77125 2,67094 --4.73264 4,92033 -2.77498 0.64150 

hold, where G1, G2 and (73 are monotonically decreasing functions of their arguments and a rigorous equality is 
only satisfied in the case of optimal bodies. The formulae 

G l =(1-0,33587/1 +0,90137/~ -0.19790/3) -1, 11 =(RIL) ~ 
G 2 =(1-0.53319s I +0.69406Sl 2 -0.11091Sl3) - I ,  s! = (R 2 IS') ~6 (3.1) 

G 3 = (1 - 0,76759w! + 1.30968wl 2 - 0,28216w~)-!, w! = (R 3 / W') ~ 

are constructed using an approximation of the data from Table 1 and taking account of the fact that GI(0) = G2(0) 
= G3(0 ) -- I. 

The error of approximation of the calculated data in Table I by formulae (3.1) does not exceed 0.08% for GI, 
0.14% for G2 and 0.16% for G3. 

In the neighbourhood of the points C and D (see Fig. la, b) ¥ - a(x- Xo)(O - %) and ¥ - b(x - x0)0, respectively 
(a and b are certain constants). Hence, in accordance with (2.2) and (2.1.9) when 00 = n,/2 on the arc CD 

x/ Ro =O(ix3), r/ Ro-l =O(tt 2) when tt---~0 
(3.2) 

xlL_l=O(02) ,  r lL_R/L=O(O 3) when a ~ O  

where St = x/2 - 0 (x = 0, r = Ro at the point C and x = L, r = R at the point D). 
We now introduce the parametric variable 13, assumingx/L = p(a, fl)/p(a, O) in CD, where 

a2 eosl3 a In 1 +2ac°sl3+a2 

p(a,[3)= 2(l_2a2 cos2~l+a4)-8(l+a2 ) l_2aeos l3+a2  

and a is a fixed parameter in the range (0, 1) and 13 varies in the range [0, ~ 2 ] . I t  can be shown t h a t p ( ~  13) is a 
monotonically decreasing function of ~l,p(a, rd2) = 0 andp(a, 13) = Q((~2  - 13) ~ as 13 ~ rd2 andp(a ,  [$) -p(a, O) 
= O(~ 2) as 13 ---> 0. By (3.2), 0 = O(13) when 13 ---> 0 and r d 2 -  0 = O(x/2 - 13) whenB ---> n/2. The function f(~) in 
the representation r/R = f(~) must therefore satisfy the conditions f(0) = 1,f'(13) = O(132) as 13 --~ 0 andf(g/2) = 
Ro/R,f(~) = O(~2  - 13) as B ~ ~/2. 

From the results of the calculations, taking account of what has been said above, approximate formulae were 
constructed for determining the shape of the leading parts of optimal semi-infinite solids of revolution in axially 
symmetric flow of a perfect gas when T = 1.4 in the form 

x : . . . ,  r / 
R 0 p(0,3;0) R 0 ,  R0 = 1+ I aksin2t+l~ , ~e[0 ,Tt /2]  (3.3) 

The values of a k are shown in Table 2 (L/Ro and L/R are shown in Table 1). 
Suppose the el is the maximum relative error in the approximation of the quantity r by formulae (3.3) with respect 

to [I (for fixed M.) and that e2 is the maximum error with respect to 13 in the approximation of the quantity 0:e2 
= 10 - aretg (r~/xll) I. As M. increases, running through the values indicated in Tables 1 and 2, the magnitudes of 
E1 and e2 increase monotonically: the first from 10 -5 to 7 x 10 -5 and the second from 2 x 10 -4 to 15 x 10:4. The use 
of formulae (3.3) in the case of a spline approximation of the data from Tables 1 and 2 for intermediate values of 
Mo usually leads to an increase in the values of el and e2, but el does not increase by more than an order of magnitude 
while e2 increases by factor of no more than 2. This enables one to construct optimal semi-infinite solids of revolution 
in an axially symmetric flow of a perfect gas when T = 1.4 for arbitrary values of  M. lying in the range [0.5; 0.88]. 

Computational investigations were carried out in [4-9] to determine the critical Math number for certain shapes 
of  the leading part of a semi-infinite solid of revolution in a flow of perfect gas with T = 1.4. A half (up to the 
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centre section) of the solid of revolution obtained in [12] as a result of the solution of a problem on the cavitational 
flow of an axially symmetric stream of an incompressible fluid around a disc or sphere, using the Ryabushinskii 
scheme, was considered as the leading part of the body (using the first initials of the authors of [12] and [7-9], for 
brevity, we shall call such bodies KVK bodies with plane and spherical bluntness). "Parabolic" bodies with a generatrix 
equation r/R = [(x/L)(2 -x/L)]~, where n is a positive constant, when 0 <~ x ~< L and r/R = 1 whenx > L were also 
considered. It was established that KVK bodies with a plane bluntness possess the greatest critical Maeh number 
for a wide range of variation in the parameter L/R among the listed shapes of bodies. 

Thus [9], when L/(2R) = 0.8672M, = 0.786 for a KVK body with plane bluntness, M. = 0.759 for a KVK body 
with spherical blunmess, M. = 0.752 for a parabolic body when n = 0.3 and M. = 0.742 for a parabolic body when 
n = 0.5. Computational and experimental investigations have also been carried out to determine the drag of the 
above-mentioned solids of revolution when L/(2R) = 0.8672 in an air flow and it was established that KVK bodies 
with plane bluntness have minimum drag over the range of free-stream Math numbers M. < Ida < 0.97. 

It is obvious that bodies, for which the shape of the leading section is obtained from the solution of the problem 
of the flow of an incompressible fluid around a disc using the Ryabushinskii scheme, are not absolutely optimal 
with respect to M. and differ from bodies whose construction is dealt with in this paper. For instance, in the case 
of a body with a length of the leading section L/(2R) = 0.8672, the method developed in this paper gives max M. 
= 0,8127. The dimensionless coordinates x/R and rl/R of the contour of the leading section of a KVK body with 
plane bluntness when L/(2R) = 0.8672, borrowed from [9], are presented below. 

x/r 0 0,0710 0 , 2 6 5 6  0 ,3881 0.5593 0,7995 1.1350 1.6054 1.7344 
rllR 0 , 5 4 2 0  0 ,6396  0 . 7 5 7 2  0 .8070  0.8607 0 .9165  0 . 9 6 6 9  0.9984 1 
dr/R 0 .0016  0 ,0075  0 . 0 1 4 5  0 ,0168  0.0176 0 .0170  0 . 0 1 2 2  0.0020 0 

The values of the coordinates r/R of the contour of the body which is optimal with respect to M. when L/(2R) 
= 0.8672 are obtained by subtracting the corresponding values of Ar/R from rl/R. The body which is optimal with 
respect to M, lies completely within a KVK body with plane bluntness. 
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